summaryrefslogtreecommitdiff
path: root/maze.py
blob: ac7d1b8413d5afa0940d36560009b7492485c85f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from cell import Cell
import time
import random

class Maze:
    def __init__(
            self,
            x1,
            y1,
            num_rows,
            num_cols,
            cell_size_x,
            cell_size_y,
            win=None,
            seed=None
    ):
        self._cells = []
        self._x1 = x1
        self._y1 = y1
        self._num_rows = num_rows
        self._num_cols = num_cols
        self._cell_size_x = cell_size_x
        self._cell_size_y = cell_size_y
        self._win = win
        if seed:
            random.seed(seed)

        self._create_cells()
        self._break_entrance_and_exit()
        self._rec_break_walls(0, 0)
        self._reset_cells_visited()

    def _create_cells(self):
        self._cells = [[Cell(self._win) for i in range(self._num_rows)] for j in range(self._num_cols)]
        # for i in range(self._num_cols):
        #     col_cells = []
        #     for j in range(self._num_rows):
        #         col_cells.append(Cell(self._win))
        #     self._cells.append(col_cells)
        
        [[self._draw_cell(i, j) for j in range(self._num_rows)] for i in range(self._num_cols)]
        # for i in range(self._num_cols):
        #     for j in range(self._num_rows):
        #         self._draw_cell(i, j)

    def _draw_cell(self, i, j):
        if self._win is None:
            return
        x1 = self._x1 + i * self._cell_size_x
        y1 = self._y1 + j * self._cell_size_y
        x2 = x1 + self._cell_size_x
        y2 = y1 + self._cell_size_x
        self._cells[i][j].draw(x1, y1, x2, y2)
        self._animate()

    def _animate(self):
        self._win.redraw()
        time.sleep(0.01)

    def _break_entrance_and_exit(self):
        self._cells[0][0].twall = False
        self._draw_cell(0, 0)
        self._cells[-1][-1].bwall = False
        self._draw_cell(self._num_cols-1, self._num_rows-1)

    def _rec_break_walls(self, i, j):
        self._cells[i][j].visited = True

        while True:
            next_index = []
            # look for next cell to visit
            # left
            if i > 0 and not self._cells[i - 1][j].visited:
                next_index.append((i - 1, j))
            # up
            if j > 0 and not self._cells[i][j - 1].visited:
                next_index.append((i, j - 1))
            # right
            if i < self._num_cols - 1 and not self._cells[i + 1][j].visited:
                next_index.append((i + 1, j))
            # down
            if j < self._num_rows - 1 and not self._cells[i][j + 1].visited:
                next_index.append((i, j + 1))

            # if no further cell to go, then draw and return
            if len(next_index) == 0:
                self._draw_cell(i, j)
                return

            # choose next direction to go in
            direction_index = random.randrange(len(next_index))
            next = next_index[direction_index]

            # break walls between this and next cell
            # left
            if next[0] == i - 1:
                self._cells[i][j].lwall = False
                self._cells[i - 1][j].rwall = False
            # up
            if next[1] == j - 1:
                self._cells[i][j].twall = False
                self._cells[i][j - 1].bwall = False
            # right
            if next[0] == i + 1:
                self._cells[i][j].rwall = False
                self._cells[i + 1][j].lwall = False
            # down
            if next[1] == j + 1:
                self._cells[i][j].bwall = False
                self._cells[i][j + 1].twall = False

            self._rec_break_walls(next[0], next[1])

    def _reset_cells_visited(self):
        for col in self._cells:
            for cell in col:
                cell.visited = False

    def _rec_solve(self, i, j):
        self._animate()
        
        self._cells[i][j].visited = True
        
        if i == self._num_cols - 1 and j == self._num_rows - 1:
            return True

        # try moving left
        if (
                i > 0
                and not self._cells[i][j].lwall
                and not self._cells[i - 1][j].visited
        ):
            self._cells[i][j].draw_move(self._cells[i - 1][j])
            if self._rec_solve(i - 1, j):
                return True
            else:
                self._cells[i][j].draw_move(self._cells[i - 1][j], True)
        # try moving up
        if (
                j > 0
                and not self._cells[i][j].twall
                and not self._cells[i][j - 1].visited
        ):
            self._cells[i][j].draw_move(self._cells[i][j - 1])
            if self._rec_solve(i, j - 1):
                return True
            else:
                self._cells[i][j].draw_move(self._cells[i][j - 1], True)
        # try moving right
        if (
                i < self._num_cols - 1
                and not self._cells[i][j].rwall
                and not self._cells[i + 1][j].visited
        ):
            self._cells[i][j].draw_move(self._cells[i + 1][j])
            if self._rec_solve(i + 1, j):
                return True
            else:
                self._cells[i][j].draw_move(self._cells[i + 1][j], True)
        # try moving down
        if (
                j < self._num_rows - 1
                and not self._cells[i][j].bwall
                and not self._cells[i][j + 1].visited
        ):
            self._cells[i][j].draw_move(self._cells[i][j + 1])
            if self._rec_solve(i, j + 1):
                return True
            else:
                self._cells[i][j].draw_move(self._cells[i][j + 1], True)

        # went wrong way -> backtrack
        return False

    def solve(self):
        return self._rec_solve(0, 0)